A Concerning 2018-2019 Southern Africa Cropping Season

Laura Harrison, Chris Funk, Will Turner, and Juliet Way-Henthorne

Special thanks to Climate Hazards Center and NASA FAME members for their contributions

Main points:

  1. Below normal rainfall so far in many rainfed cropping areas
  2. Pessimistic forecast for early 2019 rainfall in some areas of concern based on multi-model forecast and expectation for El Niño
  3. Forecast hotter than normal temperatures poses additional hazard for crops

Poor growing conditions to start the 2018-2019 season

Thus far, the 2018-2019 cropping season has been lackluster in terms of rainfall performance across much of Southern Africa (Figure 1a). Rainfall accumulations from mid-October to late December are below the 1981-2017 average by 50 mm to 200 mm in areas south of northern Zambia and northern Mozambique. In southeast Angola, southern Zambia, and parts of Zimbabwe, Botswana, South Africa, and Madagascar, these anomalies are 1.5 to 2 standard deviations below average- and thus are very dry when compared to the same period for past 1981-2017 seasons. Based on December CHIRPS preliminary rainfall data and CHIRPS-GEFS short term forecasts, CHC Early Estimates indicate that more recent rains may be closer to expected climatology for the majority of this region. Timely improvement in South Africa would be a much-needed positive change, as the country is a major contributor to regional maize production. The December data indicate a swath of continued below normal rainfall stretching across southern Angola, much of Zimbabwe, and Madagascar.

Figure 1. Rainfall performance thus far in 2018-2019 season. (a) Climate Hazards Center Early Estimates show rainfall anomaly and standardized precipitation index (SPI) for recent ~2 month and 20-day accumulation periods. The last 10 days of each period is based on an unbiased GEFS forecast (CHIRPS-GEFS). (b) Probability of October to April 2018-2019 rainfall total being below normal, normal, or above normal, based on to-date accumulations and if historical mid-December to April rainfall were to complete this season.

Rainfall during the next two to four months will be an important determinant of production outcomes. Rainfall forecasts for this period are concerning (see next section) given expected El Niño conditions and the low rainfall seen thus far across the region. Time will tell the actual outcome. Impacts thus far include delayed planting, crop damage from heatwaves, and poor veld and livestock conditions, according to the Southern Africa Development Community (SADC)’s December 2018 Agromet Update.

What if rainfall for the rest of the season is the same as in previous years? This scenario can be helpful to gauge the importance of season-to-date rainfall for the seasonal total. Also, it incorporates to some extent historical tendencies for persistence or transience in sub seasonal rainfall, if such patterns exist. Based on current conditions and climatological outcomes, there appears to be a high probability (50-90%) that many critical maize growing areas in South Africa, and also in the Caprivi Strip and parts of Angola and Zambia, will experience low seasonal rainfall totals (Figure 1b). Seasonal rainfall forecasts are pessimistic for some for these areas, as discussed below.

Below normal rainfall in early 2019 is the most likely scenario

For a large part of southern Africa that has already seen rainfall deficits, climate model forecasts indicate a 40-50% chance of rainfall during January to March falling below normal. Below normal is defined here as falling into the driest 1/3 of years. This outlook is coming from a multi-model ensemble forecast from the North American Multi-Model Ensemble (NMME). Areas with forecast below-normal rainfall include South Africa, Zimbabwe, Botswana, southern Zambia, central and southern Mozambique, south and eastern Angola, and Namibia. (Figure 2a).

Figure 2. Current forecasts and El Niño assumptions. (a) NMME probabilistic rainfall forecast for January to March 2019 based on December 2018 initial conditions. (b) Root zone soil moisture forecasts from the NASA Forecasting for Africa and the Middle East (FAME) project. Maps accessed 19 Dec 2018. More information can be found at https://lis.gsfc.nasa.gov/projects/fame. (c) Average October to March CHIRPS rainfall anomaly for previous El Niños of similar expected moderate strength. Selections based on Niño3.4 SST.

Most models agree with respect to below-normal rainfall as the most likely category that these areas will fall into. If one considers the rainfall forecast from one of these NMME models (for December onwards) and the soil moisture conditions that may have been present in November, elevated concerns for crop impacts appear justified. NASA FAME forecasts, based on the GEOS5 model, show root zone soil moisture (in the top 1 meter of soil) in low-percentile categories for January and February (Figure 2b) and through April.

These pessimistic forecasts and observed deficits align with the expectation for El Niño and outcomes of past El Niño seasons. Figure 2c shows the average rainfall anomaly for October to March across five previous moderate strength El Niños (1994-95, 2002-03, 2004-05, 2006-07, and 2014-15). According to the CPC/IRI December forecast, for January to March, there is a 90% chance of El Niño through the 2018-19 austral summer. You can check the current outlook here.

Another hot, dry season?

Heat stress and high evaporative demand due to above-normal temperatures also appear to be a hazard for this season. The current NMME forecast for January to March 2019 near-surface air temperatures is reminiscent of what the models forecast for the 2015-2016 season (Figure 3). In early 2016, hotter than normal days exacerbated longer-term effects of rainfall deficits and were a factor in reducing South Africa maize yields by 40% (Archer et al., 2017). Similar to 2015-2016, the 2018-2019 NMME forecast for January to March (December initial conditions) show +0.5°C to +1°C anomalies for most of southern Africa and a prominent epicenter with +1°C  to +2 °C anomalies. The forecast epicenter is smaller in 2018-2019 than in 2015-2016, which is consistent with the difference in expected 2018-2019 El Niño strength compared to the very strong 2015-2016 El Niño.

Figure 3. NMME 2-m air temperature anomalies forecast for upcoming January to March season based on (a) December 2015 (b) December 2018 initial conditions.